算法的时间复杂度是什么?

2024-05-19 21:38

1. 算法的时间复杂度是什么?

执行一个算法所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。一个算法花费的时间与算法中语句的执行次数成正比例,算法中哪个语句的执行次数多,它花费的时间就多。
1.语句频度在算法中一个语句的执行次数称为语句频度或时间频度,记为T(n)。
2)算法的渐进时间复杂度一般情况下,算法的执行时间T是问题规模n的函数,记作T(n)。要精确地表示算法的运行时间函数常常是很困难的,即使能够给出,也可能是个相当复杂的函数,函数的求解本身也是相当复杂的。为了客观地反映一个算法的执行时间,可以用算法中基本语句的执行次数的数量级来度量算法的工作量,称作算法的渐进时间复杂度,简称时间复杂度,通常用O来表示。

算法的时间复杂度是什么?

2. 算法时间复杂度怎么算

一、概念时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)比如:一般总运算次数表达式类似于这样:a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+fa ! =0时,时间复杂度就是O(2^n);a=0,b0 =>O(n^3);a,b=0,c0 =>O(n^2)依此类推eg:(1)   for(i=1;i<=n;i++)   //循环了n*n次,当然是O(n^2)for(j=1;j<=n;j++)s++;(2)   for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)for(j=i;j<=n;j++)s++;(3)   for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)for(j=1;j<=i;j++)s++;(4)   i=1;k=0;while(i<=n-1){k+=10*i;      i++;      }//循环了n-1≈n次,所以是O(n)(5)   for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;//循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:log(a,b)=log(c,b)/log(c,a)所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的二、计算方法1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。3.常见的时间复杂度按数量级递增排列,常见的时间复杂度有:常数阶O(1),  对数阶O(log2n),  线性阶O(n),  线性对数阶O(nlog2n),  平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。其中,1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。2.O(2^n),指数阶时间复杂度,该种不实用3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶以外,该种效率最高例:算法:for(i=1;i<=n;++i){for(j=1;j<=n;++j){c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2for(k=1;k<=n;++k)c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3}}则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c则该算法的 时间复杂度:T(n)=O(n^3)四、

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。O(1)Temp=i;i=j;j=temp;                    以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。O(n^2)2.1. 交换i和j的内容sum=0;                 (一次)for(i=1;i<=n;i++)       (n次 )for(j=1;j<=n;j++) (n^2次 )sum++;       (n^2次 )解:T(n)=2n^2+n+1 =O(n^2)2.2.for (i=1;i<n;i++){y=y+1;         ①for (j=0;j<=(2*n);j++)x++;        ②}         解: 语句1的频度是n-1语句2的频度是(n-1)*(2n+1)=2n^2-n-1f(n)=2n^2-n-1+(n-1)=2n^2-2该程序的时间复杂度T(n)=O(n^2).         O(n)2.3.a=0;b=1;                      ①for (i=1;i<=n;i++) ②{s=a+b;    ③b=a;     ④a=s;     ⑤}解:语句1的频度:2,语句2的频度: n,语句3的频度: n-1,语句4的频度:n-1,语句5的频度:n-1,T(n)=2+n+3(n-1)=4n-1=O(n).O(log2n )2.4.i=1;       ①while (i<=n)i=i*2; ②解: 语句1的频度是1,设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n取最大值f(n)= log2n,T(n)=O(log2n )O(n^3)2.5.for(i=0;i<n;i++){for(j=0;j<i;j++){for(k=0;k<j;k++)x=x+2;}}解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。下面是一些常用的记法:访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。



3. 算法时间复杂度指的是什么?

时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐进的,亦即考察输入值大小趋近无穷时的情况。

空间复杂性介绍
空间复杂性是指计算所需的存储单元数量。隶属于计算复杂性(计算复杂性由空间复杂性和时间复杂性两部分组成)。算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源量称为时间复杂性,需要空间资源的量成为空间复杂性。
一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。算法的时间复杂度和空间复杂度合称为算法的复杂度。

算法时间复杂度指的是什么?

4. 算法时间复杂度有几种

算法时间复杂度有3种:
1、常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
2、线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
3、k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。


扩展资料:
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),存在一个正常数c使得fn*c>=T(n)恒成立。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。

5. 算法的时间复杂度是什么?

算法的时间复杂度,是一个用于度量一个算法的运算时间的一个描述,本质是一个函数。
根据这个函数能在不用具体的测试数据来测试的情况下,粗略地估计算法的执行效率,换句话讲时间复杂度表示的只是代码执行时间随数据规模增长的变化趋势。
常用大O来表述,这个函数描述了算法执行所要时间的增长速度,记作f(n)。算法需要执行的运算次数(用函数表示)记作T(n)。存在常数 c 和函数 f(n),使得当 n >= c 时 T(n) <= f(n),记作 T(n) = O(f(n)),其中,n代表数据规模也就是输入的数据。

时间复杂度如何计算
1、常量阶:只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2、线性阶、n方阶:一般情况下,如果循环体内循环控制变量为线性增长,那么包含该循环的算法的时间复杂度为O(n),线性阶嵌套线性阶的算法时间复杂度为O(nⁿ),涉及下文乘法法则。
3、线性对数阶:当一个线性阶代码段法嵌套一个对数阶代码段,该算法的时间复杂度为O(nlogn)。
4、指数阶和阶乘阶:根据函数,随着n的增加,运行时间会无限急剧增加,因此效率非常低下。

算法的时间复杂度是什么?

6. 算法的时间复杂度


7. 算法的时间复杂度?

时间复杂度的表示: O(执行次数)

一个有序的元素列表查找某个元素可以用二分查找,每次取中间元素进行比较大小,直到相等。因为每次不符合时总会排除一半的元素 ,所以查找的次数为log2n,那么时间复杂度为O(log2n)。如果是一个无序的元素列表,查找从位置0开始,那么简单查找的次数为n,那么时间复杂度为O(n)。

除此之外快速排序为O(n*log2n),选择排序为O(n*n)。

旅行算法就是n个旅行地点,你可从某个地方出发到余下某下一个地点,走完所有地点。从最开始时走有n个地点可以选择,接下来再走就有n-1个地点可以选择,这样直到只有一个地点可以选择。那么所有你可走的路径就是一个阶乘,选择复杂度为O( n!)。

关于数组和链表的操作。先说数组,因为你有了元素的索引,可以随机访问,你就能快速找到这个元素,而且所有元素的读取都是一样的步骤,所以读取时间复杂度为O(1),数组的插入和删除的时间复杂度为O(n),因为要移动元素。链表的特性是每个都存储了下一个元素的地址,只能顺序访问。那么读取插入删除的时间复杂度分别是O(n)、O(1)、O(1)。

算法的时间复杂度?

8. 算法的时间复杂度

求解算法的时间复杂度的具体步骤是:
  ⑴找出算法中的基本语句;
  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
  ⑵计算基本语句的执行次数的数量级;
  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
  ⑶用大Ο记号表示算法的时间性能。
  将基本语句执行次数的数量级放入大Ο记号中。
  如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
  for(i=1;ii++)  x++;  for(i=1;ii++)
  for(j=1;jj++)  x++;  第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
  常见的算法时间复杂度由小到大依次为:
  Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
这只能基本的计算时间复杂度,具体的运行还会与硬件有关。
最新文章
热门文章
推荐阅读